A Stratified Activated Dry Sand Filter as an Alternative to Remove Iron and Manganese Concencrations in Ground Water Treatment Technology

Rachmawati S. Dj.*
M. Rangga Sururi
Dian Novita M Environmental Engineering Department
National Institute of Technology (ITENAS), Bandung
Corresponding author*: rachmasdiaitenas.ac. id

Abstract

The , ccurrence of iron and manganese in ground water may pose problems to community. ie produces a bitter taste and odor turns white clothes 10 yellowish ones. and stains laundry and plumbing lixtures. Activated Dry Sand Filter (ADSF) could remove high iron and manganese concentrations. This research aims to identify the effect of the variation of filter media and its depth towards the removal of iron and manganese concentrations in a stratified ADSF. Two sand diameters (0.84 mm and 1.19 mm) are used in two different positions. i.e. variation 1.50 cm depth of 0.84 mm sand is put above 50 cm depth of 1.19 mm sand: whereas Standard (WQS) issued by Indonesian Republic Ministry of Health (No. 907/MENKES/SK/VII year 2002) (i.e. $0.3 \mathrm{mg} / \mathrm{L}$ and $0.1 \mathrm{mg} / \mathrm{L}$ for tolerable iron and manganese concentrations in drinking water respectively). This is generally happened in 20 cm depth of filter with the efficiency of 93% to 100%. For manganese. it is only happened in 100 cm depth although the efficiency is 100%. The removal of these substances in variation I is better than that of variation II. The dissolved oxygen concentrations, pH and turbidity range from $6.1 \mathrm{mg} / \mathrm{L}$ to $8.0 \mathrm{mg} / \mathrm{L} .7 .0$ to 7.4 and 0.2 to 0.5 NTU subsequently. This ADSF is economically viable due to the cost is only Rp. $460 / \mathrm{m} 3$ compared to the Perusahaan Daerah Air Minum Bandung (Bandung Water Supply Enterprise)'s water cost that is Rp. $880 / \mathrm{m} 3$ (for the first 10 m 3).

Keywords: iron, manganese, sand diameter. sand ór filter depth

1.0 INTRODUCTION

The availability of water in urban area is extremely important considering its dynamic community life. To fulfill the need of water, the community cannot only rely on the supply from the Bandung Water Enterprise (Perusahaan Derah Air Minum (PDAM) Bandung) due to its limited service. Ground water is therefore one of the alternatives to meet the need. Unfortunately. ground water is very limited in terms of its quality as well as its quantity. From the quality of view. it is far from the Water Quality Standard (WQS) set by Indonesian Republic Ministry of Health (No. 907/MENKES/SK/VII year 2002). Problems that are mostly found in ground water are those of the high turbidity and high concentrations of iron and manganese. It is therefore required to find alternatives of ground water treatment as to meet ha W'QS. Activated Dry Filler Sand (ADFS), that had once been successfully researched by Budianto. Dedi et al, 1988. could remove high iron and manganese concentrations until they meet the WKS. As that ADFS used uniform sand as its media this research therefore ailns to identify the effect of the variation of Bitter media and its depth towards the removal of iron and manganese concentrations in a stratitied ADFS.

2.0 STEPS OF WORK

To meet the objective of this research. steps of work are arranged as can be seen in Fig. 2.1. These steps are described below.

Figure 2.1. Steps of Work

2.1 Litersture Review

Literature review shoula be done initially in order to find some references with regard to the research.

2.2 Media and Equipment Arrangement

2.2.1 Equipment Arrangement

The filter used in this research is made of PVC pipe with 6 inches diameter and 150 cm height. There are θ^{P} re-Researc faucets as effluent channels (sampling valves) with 20 cm distance hetween each channel. Operationallf \{nfluent Prepar filter is equipped with a water basin. a pump. a plastic hose. an influent tank, a valve as a disclageipment Ope controller. as figured in Fig.2.2.

Figure 2.2. An Aclivated Drs Sand Filter

ADSF operation is as follows:

1. Arthbial water is put in the water busin downly placel
2. Water is pumped to the intionent tanh that is put in 60 em height. -
3. Discharged is controlled in accordance with the required operation.
4. All sampling valves are opened and let the water discharge for 5 minutes to first condition it
5. Effluent from each valve is storaged and measured for each paranmer that is going to be analized
2.2.2 Media Arrangement

Filter media that generally used in Indonesia is that of Bangka sand/kwarsa sand. From the previous research.
 dianetres 14 . These diametres are then used in this research. The next step is to produce active sand as follows:
1.0 .84 mm and 1.19 mm diametres sand is washed eparatcly and dried alter
2. It is then soaked with KMnO_{4} (). 0 i N for about 24 hours. to make it active.
3. Next. it is dried at $105^{\circ} \mathrm{C}$ in an oven lor about 2 hours.
4. The sand is readily used then.
5. It is finally put in the PVC pipe with regards to its dianetre in accordance with the varations helow as shown in Fig 2.3:
a. Variation 1.50 cm depth of 0.84 mm sand diameter is put above 50 cm depth of 1.19 mbin sand diameter
b. Variation It, the above position is oppositely placed

Figure 2.3. Variation of Media Composition

2.3 Laboratorium Analysis Mcthods

2.3.1 Physical Parameters

Physical parameters that are analyzed in the research along with their methods are as follows [1]:

* Turbidity : Turbidimetri Method
* pH : Elektroda Method
2.3.2 Chemical Parameters

Chemical parameters along with their methods used in this research are as follow |l $^{\text {I }}$;

* Iron and manganese : : Colorimetri Method
* Dissolved Oxygen (DO)
: Titrimetri Method

2.4 Data Collection and Compilation

All data are collected alid compiled to be easily analysed.

2.5 Data Analysis

Research results such as iron and manganese concentations. U() concontration. lubidity and pll "Saffad Diametre compared with the WQS.
2.6 Conclusion

Final results are then concluded. Analysis is needed both technically and economically to conclude the most 50 cm effective filter variation.

3.0 RESEARCIIRESUATS

This research is done with regarch to some valiations in kems of influent concentrations and filter compositions. Influent concentrations that are used are $3 \mathrm{mg} / \mathrm{L} .7 \mathrm{mg} / \mathrm{L}$ and $10 \mathrm{mg} / \mathrm{L}$ respectiveiy with the discharge of $0.389 \mathrm{~L} / \mathrm{dt}$. Sand diametres used are 0.81 mm and 1.19 mm . The result of this research are shown in Table 3.1-Table 3.6 as follows

Note ") Iron concentration complies with the WQS
**) Water Quality Standard (WQS) set by Indencsian Repuhtic Minstr) of Heallh (No 9uD/MENKES:SK:VII year 2002) Source Research result

Sand Depth (Cmi)	Mar sanese Concentratuon, Discharge 0 389 L.da												
	Varanion - --...-...												
	$\begin{gathered} 3 \\ m / l \end{gathered}$	"is	$\begin{gathered} 7 \\ \text { nụ! } 1 . \end{gathered}$	"	$\begin{gathered} \|0\| \\ m: L \end{gathered}$	"	mel.	"*	$\begin{gathered} 7 \\ m: 1 \end{gathered}$	\% 11	10	\%	Standard $\left.M n^{* *}\right)$
0	3.00	4	7.00	0	1000	19	301	$1)$	700	0	10.00	0	0.1
20	0.99	67	2.97	57.57	3.96	611.4	198	34	2.97	57.57	3.96	604	0.1
40	0.00*)	100	1.98	71.71	2.97	70.3	0.99	67	1.98	71.71	2.97	70.3	0.1
60	0,00*	100	0.99	8586	1.98	80	107	$1{ }^{1}$	0 m	85 s	14	$\mathrm{N0} 5$	ก 1
80	$\left.0.00^{*}\right)$	100	0.00*)	100	0.40	Y(1)	0.0()$\left.^{*}\right)$	100	$0.10 \times)$	100	0.49	90.1	01
100	$0.00 * 1$	100	$0.00{ }^{\circ}$	101	(0.610*)	110	0.00) ${ }^{(1)}$	100	600^{*}	100	(0)0\%)	100	61

Nate Manganese concentration complies who the W()
*) Water Quality Standard (WQS) set by Indonestan Republic Mmintry of Healh (No. 907 MENKISS:SK:V11 year 2002) Source: Research result

Sand Depth (cm)	Variation!								
	Discharge: 0.389 Lidt								
	$3 \mathrm{mb} / \mathrm{L}$			- $7 \mathrm{my} / \mathrm{L}$			$10 \mathrm{mg} / \mathrm{L}$		
cm	Fe	Mn	DO)	Fe	Mn	D0	Fe	Mn	DO
0	3	3	6.78	7	7 -	6.7	10	10	6.1
20	0.10	0.99	6.77	0.10	2.97	6.6	0.25	3.96	6.1
10	0,00	0.110	759	1) 10	198	7	0.20	2.97	7.3
60	0.100	0.10	7.61	0,00	0.94	7.5	(1,10	1.98	7.3
80	$\bigcirc 0,00$	0.00	772	0,00	$0.00{ }^{-1}$	75	0.00	0.99	74
100	0.00	0.00	749	0.00	11.01	7.6	0.00	11.00	7.5
	Variation 11								
	Discharge: 0,389 Lid								
Saind Depth (cm)	- $3 \mathrm{mu} / \mathrm{L}$... $7 \mathrm{mb} / \mathrm{L}$... $10 \mathrm{mg} / \mathrm{L}$		
cill	Fe	Mn	D)	Fic	Mn	DO	Fe	Mn	DO
0	3	:	675	7	7	1.7=	111	m	69
20	11,20	1.98	6,80	10,211	$\underline{-21}$	0,53	0,20	3,90	6.10
10	0.10	0.99	0.75	0,10	1.98	6,50	0,15	2,97	6.00
60	0,00	0,99	7,42	0,10	0.99	7,40	0,10	1,98	7,38
80	0.00	0.10	7.56	0.00	0.00	7,48	0,00	0,99	7.40
100	0.10	0.00	7.80	0.00	0,00	7.55	0.00	0,00)	7,49

Source: Research result

Table 3 I I urbidit

Sand Depth (cm)	Variation								
	Discharge $0,389 \mathrm{~L} / \mathrm{dt}$								
	$3 \mathrm{mg} \cdot \mathrm{L}$			$7 \mathrm{mb/L}$			10 my /		
(1II	$1 \times$	N11	1	1	111	N	1.	$1: 1$	4
0		,	06*)	7	7	$0.8{ }^{\circ}$	10	iif	(11*)
20	13.10	(190)	$05 *$	010	297	(15*)	リ29	319	$0.5 \cdot$
41	0.01	(1, 釈	$11+1$	11.111	198	$11.5 *$	1131	347	(0) 0
611	11.0	0, (1)	0.141	0.00	(1) y9	19.5 !	11.16	1.98	$0.5 *!$
811	0,00	0,00	$0,3 * 1$	0.100	0,60	$0.4 *$	0 (1i1)	(6) 99	$05 *$
100	0.01	0.00	0, 2×1	(1,00)	0.00	(0,3*)	0.00	0,00	0, S^{*})
Salud Depth (cm)	Varamon Il								
	Discharge 0,389 Lidi								
	$3 \mathrm{me} / 1$			$7 \mathrm{me} / \mathrm{L}$			$10 \mathrm{my} / \mathrm{L}$		
0	Fe	Mn	K	Fe	Mn	K	Fe	Mn	K
20	3	3	0.6*)	7	7	0, 8×1	10	10	1, 0^{*})
40	0.20	1.98	(0.5*)	0.20	297	0, 6^{+})	0.20	3.96	$0.6{ }^{*}$
80	0,10	0.99	0.5*)	0.10	1.98	(1,6*)	0.15	2.47	$0.5 *$
80	0.00	11,94	(0.4*)	0, 10	0.99	(1.5*)	1).11)	1.98	0.5*)
101	0.06	000	0.3*)	0.00	! 00	(1) 4	0.06	0.99	05*)
	18.00	0,101		0.00	i1014	(13) $3^{2 *}$	n,00	0,10)	0.5*)

Note K : Turbidity (NTU). *) Mangian concentration comply with the WQS Source Restarch resull

Table 3.5. pll

Sand Depth (cm)	Variation!								
	- - Discharie: 0389 l d								
	3 แ.1.			1 ngrL			110 mb ,		
cm	Fe	Mn	pH	Fe	Mn	pH	Fe	Mn	pH
0	3	3	705	7	7	7.1	10	10	71
20	0,10	099	731	010	297	7.3	0.25	396	7.1
10	0,00	0.00	7.28	0.10	198	74	020	297	74
60	0,00	0,00	7.28	0.00	0.99	7.4	0.10	1.98	7.4
80	1,00	0,00	7.29	0.00	0,00	7.4	0.00	0.99	7.4
100	0,00	0.00	1.29	0.00	0.00	74	0.00	0.00	7.4
Sind Deph (cin)	Varation 11								
	Discharge: $11,389 \mathrm{~L} / \mathrm{d} 1$								
	- 3 mb			7 mp			10 mbL		
cm	Fe	M 11	pH	Fe	Mn	pH	Fe	Mn	pH
0	3	3	7,01	7	7	7.22	10	10	7,28
20	10,20	1.98	7.30	0.20	2.97	7.31	0.20	3.96	7.35
40	0,10	(1, 199	7.30	0.10	198	7,34	0.15	2,97	7.30
0	(), (1)	9.99	. 7.31	0.10	099	7.35	0.10	1.98	7.39
80	0,00	0,00	7,31	0,00	000	7.35	0.00	0.99	7.40
100	0.00	0.10	73.3	0.00	000	7.35	000	11.00	7.11)

Source: Research resuli

Table 3.6. Cost Estimation for Filter Production

No	Type of Cost	Unit	Q	Inii Price	Total Price
1	Filter Equipmen				
	16 inch PVCPipe	m	2	11250	82500
		m	1	2200%	22000
	3 Valve	41111	-	. 5000%	10601
	1 Double niple $\%$ mach	u117	2	30000°	6000
	5 Nozzle	unit	5	1500	7500
	66 inch dop	unit.	1.	27500	27500
		Lit			
	${ }^{9}$ C Glue	unit	$?$	5250	10500
	Sub Total	-		--	546000
11	Production Cost				
	1 Labor cost	day	$?$	30000	60000
	Sub Totalil				60000
	Total Price (A)				606000
111	Filter Medini				
	1. 0.8 .4 mm Banjha saind	k!	10	800	12801
		h:	16	800	12800
	3. KMnO_{4}	B	6	131	948.24
	1 Aquadest	liter	20	700	14000
	Total Price(B)				40548.2

4.0 ANALYSIS

The removal of iron is best happened in 20 cm sand depth both for variation I and for variation $I l$ as it shown in Fig 4.1 and Table 3.1. It is seen that in that depth. iron could be reduced until below the prevailing WQS i.e $0.3 \mathrm{mg} / \mathrm{L}$. Whereas. manganese could be removed generally in 100 cm sand depth as it shown in lable 3.2 and Fig 4.2.

Figure 1.I. Sand Depth vs Iron Removal

Figure 1.2 Sand Depth is Manganese Removal

4.1 Iron and Manganese

Theoretically, iror is present in water along with manganese. Their concentrations can be removed by aeration and/or filtration
In aeration. oxygen entered into the water that contains iron and manganese. would be used for oxidizing dissolved iron and manganese to become precipitate matters. Filtration is then required in order to remove these matters.
From the research. iron could be remeved until it meets the $W Q S$ generally at 20 cm sand depth. with the efficiency of 93.33% to 100.00%. Manganese could be removed 100% at the depth of 100 cm . It is prevailed for all filter variations.
Influent concentrations are not affected the removal of iron; whereas for manganese the higher concentration. the thicker lilter is required.
Table 3.1 and Table 3.2 show that the remmal of mateanese is nore diflicult than that of iron. This describes that manganese osidaton is performed alter iron oxidation is being run. This also proves that iron is much easier to be oxidized than that of manganese.
From the two variations of filter media used in this research. it can be found that variation I is better than that of variation II in removing iron and manganese. In variation I. the depth of filter to remove iron and manganese is shorter than that of variation II.

4.2 Supporting Parameters

Supporting paranteters cheched ni lhe rescanch are l)(). lurbidhe and pll.
4.2.1 Dissolved Oxygen

Table 3.3 depicts that initial 1 Os for all influent concentrations range from $6.1 \mathrm{mg} / \mathrm{h}$, $10.6 .8 \mathrm{mg} / \mathrm{L}$. It is also shown that the reduction of $D()$ is performed at the depth of 20 en and 90 cm . however. dae the continuous aeration process. the $D()$ is getting higher at 100 cm depth 10100 cm depth.

4.2.2 Turbidity

Table 3.4 shows that by using ADSF, turbidity could be reduced to $0.2-0.5 \mathrm{NTU}$. It also shows that the higher iron and manganese concentration. the more turbid water.
4.2 .3 pH

Table 3.5 describes that iron and manganese could be reduced to meet the WQS at $7.0-7.4 \mathrm{pH}$. This shows that iron and manganese could be best oxidized in that pH range.

4.3 Economic Analisys

Economic analysis is done by using Benclit Cost Ratio method. Validation period of tilter is best detined first.

4.3.1 Fïlter Validation l'eriod

Validation period of tilter and pump is 8 years. whereas activated sand should be changed every 2 years [2]. It is assumed that this filter is used for I family with 5 persons. Daily water demand is therefore calculated as follows:

User numbers $\quad=5$ persons

* Water demand per capita per day $=120 \mathrm{ll}$ [3]
* Water demand per day $\quad=5$ persons $\times 120$ l/capita/day
$=600 \mathrm{l} / \mathrm{day}$
$=0.6 \mathrm{~m} / \mathrm{day}$

4.3.2 Equipment and Media Cost Production

4.3.2.I Equipment Production

Cost for filler and pump production is as follows:

$$
\begin{gathered}
\text { Rp. } 616(000) \\
\text { 8raars } 365 d a y s \text { year }
\end{gathered}
$$

$$
\therefore \operatorname{Rp} 207.53 \ldots \ldots . .
$$

4.3.2.2 Filter Media Cost Production

Cost for producing lilter media is below:

$$
\begin{aligned}
& =\frac{\text { Rp. } 40.548 .24}{2 \text { years } \times 365 \text { days } / \text { year }} \\
& =\text { Rp. } 55.55
\end{aligned}
$$

4.4 Operational and Maintenance Cost

Sand filter has w be washed every. 3 months and replaced every ? ? ears. 200) liter water is required o wash the filter 121 . Demand of "ater for washing in operational period is then: $=\frac{2 \text { years } \times 12 \text { month } / \text { year }}{3 \mathrm{month}} \times 2001 \mathrm{t}=1600 \mathrm{lt}$

* Pu!np capacily used is assumed as $=100$ wall
* Ald can deliver water as about $\quad=23 \mathrm{~L} / \mathrm{min}=1380 \mathrm{~L} / \mathrm{jam}$
* Electricity cost per kiwh $\quad=$ Rp. $275 / k i v h$

It is assumed that washing water is taken from ras water so as it is liee of charge Electricity cost for

4.5 Electicity Cost

Electricity cost for 2 years operational period can be calculated as follows:

* Time used for pumping the water: $=\frac{6001, \text { den }}{13801.1 \text { hour }}=0.43 \mathrm{hem}$;
(3. Electricity power for a day operation $=100$ watt $\times 0.43$ hours

$$
13 \backsim 11
$$

$$
\because 0.043 \mathrm{kwh}
$$

* Electricity cost for a day
-0.04.3kwh X Rp.275/kwh
Rp. 11.825
* Electricity cost lor 2 years
$=$ Rp. 11.825×2 years x 365 days/year
$=$ Rp. $8.632 .25 \ldots .(D)$
* Total electricity cost used in a day::

$=\frac{C+D}{2 \text { years } \times 365 \text { days } / \text { year }}$
2 years $\times 365$ days/ year
Rp. 1

4.6 Water Cost for Using Filier

Total cost for a day is therefore:

$$
\begin{aligned}
& =\mathbf{A}_{\mathbf{1}}+\mathbf{B}_{\mathbf{1}} \cdot \mathbf{E} \\
& =\text { Rp. } 207.53+\text { Rp. } 55.55+\text { Rp. } 11.87 \\
& =\text { Rp. } 274.95
\end{aligned}
$$

Unit water cost is then:

$$
\begin{aligned}
& =\frac{R_{p} \cdot 274.95}{0.6 \mathrm{~m}^{3}} \\
& =R p .458 .25 / \mathrm{m}^{3}
\end{aligned}
$$

Water cost for one family with 5 persons is therefore: Rp. $160 / \mathrm{m}^{\prime}$. This cost is lower than the water cost produced by PDAM Bandung (i.c. Rp. $880 / \mathrm{m}^{\prime}$).

5.0 RECAPITULATION ANALISYS

Recapituation analysis lier fron and mangancse remoral and supporther parameters along with its cost is presented in Table 5.1

Table 5.1 Recapitulation Analisys

From Table 5.1, it is depicted that the removal of iron and manganese in variation I is faster than that of variation II. This ran be seen from the differentiation of remonal efficienc: and depth wf fiter hewewh those variations. Moreover. the $D($) in variation I is more than that of in variation II so that iron and manganese oxidation in variation 1 is performed faster than that ol in variation II. However, from those variations in filter media composition, it is shown that there is no significant differentiation in terms of turbidity. plt and water cost.

6.0 CONCLUSIONS

1. Iron could be removed until below the WQS $(0.3 \mathrm{mg} / \mathrm{L})$ both for filter variation 1 and variation II. It is performed for all influent concentrations at the filter depth of 20 cm with the efficiency of ahout 93% 100%.
2. Manganese (the WQS: $0.1 \mathrm{mg} / \mathrm{L}$) could be removed 100% at the depth of 100 cm for all influent concentrations in variation I as well as in variation II.
3. Iron is oxidized faster than manganese.
4. The removal of iron and manganese in variation I is faster than that ol in variation II.
5. Influent concentration is not significantly affected the iron removal. Whereas for manganese, the higher influent concentration. the thicker sand filter is required to re:nove it.
6. Iron and mangunese could be removed until thes met the WQS with the DO, turbidity. and pH of about 6.1 to $8.0 \mathrm{mg} / \mathrm{L} \cdot(0.2-0.5 \mathrm{NTU}$. and 7.0 sampai 7.4 subsequently.
7. The ADSF is economically viable due to it costs only Rp. $160 / \mathrm{in}^{\prime}$ compared to the PDAM Bandung's unit water cost (i.e. Rp. $880 / \mathrm{m}^{3}$).

References

1. Alaert G, \& Sri Sartika. "Water Research Method". Surabaya: National Effort. 1984.
2. Budianto. Dedi. et al. "Activated Dry Sand Fitter as an Alternative to Reduce Fe \& Min in Hater Treamem". Environmental Engineering D parment-Bandung Institute of lechnology. 1988
3. Chatib. Benny. "F'ater Supply Sheten" Indonesian Water Enterprise Association (PERPAMSI) Bandung Instilute of lechologs. 1947.
 What Fircament". Envirommental Enginecring Departmen-National Institute of Fechnology, 2005.
