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Abstract 

 

In the evaluation of slopes, the factor of safety values still remain the main indexes for 

finding out how close or far slopes are from failure. The evaluation can be done my 

means of conventional slip circle analysis (the limit equilibrium methods) or by means 

of numerical methods such as the finite element method. This study presents the 

comparison between slope stability analysis with the finite element method and the limit 

equilibrium method.  
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Introduction 

 

The development of soil and rock mechanics will influence the development of slope 

stability analyses in geotechnical engineering. Assessing the stability of engineered and 

natural slopes is a common challenge to both theoreticians and practitioners. The 

balance of natural slopes may be interrupted by man or nature causing stability 

problems. Natural slopes that have been stable for many years may suddenly fail due to 

changes in topography, seismicity, groundwater flows, loss of shear strength, stress 

change, and weathering (Abramson et al., 2002).  

 

Duncan (1996) illustrated that the finite element method can be used to analyze the 

stability and deformations of slopes. Griffiths and Lane (1999) illustrated that the finite 

element method represents a powerful alternative method for slope stability analysis 

which is accurate, adaptable and requires less assumptions, especially concerning the 

failure mechanism. The failure mechanisms in the finite element method develop 

naturally through the regions wherein the shear strength of the soil is not sufficient to 

resist the shear stresses. 

 

The main objective of this section is to evaluate and to compare the methods of slope 

stability analysis between limit equilibrium and finite element method by assuming a 

Mohr-Coulomb failure criterion.  
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Limit Equilibrium Methods 

 
Limit equilibrium methods are the most commonly used approaches in slope stability 

analysis. The fundamental assumption in these methods is that failure occurs through 

sliding of a mass along a slip surface. The reputation of the limit equilibrium methods is 

principally due to their relative simplicity, the ability to evaluate the sensitivity of 

stability to various input parameters, and the experience geotechnical engineer have 

acquired over the years in calculating the factor of safety. 

 

The assumptions in the limit equilibrium methods are that the failing soil mass can be 

divided into slices and that forces act between the slices whereas different assumptions 

are made with respect to these forces in different methods. Some common features and 

limitation for equilibrium methods in slope stability analysis are summarized in Table 1. 

All methods use the same definition of the factor of safety: 

libriumd for equiss requireShear stre

ilngth of soShear stre
FOS =   (1)  

The factor of safety is the factor by which the shear strength of the soil would have to be 

divided to carry the slope into a state of barely stable equilibrium. 

The findings related to the accuracy of the limit equilibrium methods can be reviewed as 

follows: 

 

1) For effective stress analysis of flat slopes, the ordinary method of slices is highly 

inaccurate. The computed factor of safety is too low. This method is accurate for φ = 

0 analysis, and fairly accurate for any type of total stress analysis using circular slip 

surfaces.  

2) For most conditions, the Bishop’s modified method is reasonably accurate. Because 

of numerical problems, sometimes encountered, the computed factor of safety using 

the Bishop’s modified method is different from the factor of safety for the same 

circle calculated using the ordinary method of slices. 

3) Computed factor of safety using force equilibrium methods are sensitive to the 

assumption of the inclination of side forces between slices. A bad assumption 

concerning side force inclination will result in an inaccurate factor of safety.  

4) Janbu’s, Morgenstern and Prices’s and Spencer’s method that satisfy all conditions 

of equilibrium are accurate for any conditions. All of these methods have numerical 

problems under some conditions. 
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Table 1: Features and Limitation for Traditional Equilibrium Methods in Slope 

Stability Analysis (Duncan and Wright, 1980) 

 

Method Features and Limitation 

Slope Stability Charts (Janbu, 

1968, Duncan et al, 1987) 

- Accurate enough for many purposes. 

- Faster than detailed computer analysis. 

Ordinary Method of Slices 

(Fellenius, 1927) 

- Only for circular slip surfaces. 

- Satisfies moment equilibrium. 

- Does not satisfy horizontal or vertical force 

equilibrium. 

Bishop’s Modified Method 

(Bishop, 1955) 

- Only for circular slip surfaces. 

- Satisfies moment equilibrium. 

- Satisfies vertical force equilibrium. 

- Does not satisfy horizontal force equilibrium. 

Force Equilibrium Methods (e.g. 

Lowe and Karafiath, 1960, Army 

Corps of Engineers, 1970) 

- Any shape of slip surfaces. 

- Does not satisfy moment equilibrium. 

- Satisfies both vertical and horizontal force 

equilibrium. 

Janbu’s Generalized Procedure of 

Slices (Janbu, 1968) 

- Any shape of slip surfaces. 

- Satisfies all conditions of equilibrium. 

- Permit side force locations to be varied. 

- More frequent numerical problems than some 

other methods. 

Morgenstern and Price’s Method 

(Morgenstern and Price, 1965) 

- Any shape of slip surfaces. 

- Satisfies all conditions of equilibrium. 

- Permit side force orientations to be varied. 

Spencer’s Method (Spencer, 

1967) 

- Any shape of slip surfaces. 

- Satisfies all conditions of equilibrium. 

- Side forces are assumed to be parallel. 

 
 

The limitation of limit equilibrium method in slope stability analysis has been 

demonstrated by Krahn (2003). This limitation is caused by the absence of a stress-

strain relationship in the method of analysis.  The limit equilibrium method lacks a 

suitable procedure for slope stability analysis under rapid loading condition as 

illustrated by Baker et al. (1993). 

 
Finite Element Method 

 
In the finite element method, the latter analysis, the so-called shear strength reduction 

(SSR) technique (Matsui & San 1992, Dawson et al. 1999) can be applied. The angle of 

dilatancy, soil modulus or the solution domain size are not critical parameters in this 
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technique (Cheng, 1997). The safety factor can be obtained, assuming a Mohr-Coulomb 

failure criterion, by reducing the strength parameters incrementally, starting from 

unfactored values ϕavailable and cavailable, until no equilibrium can be found in the 

calculations. The corresponding strength parameters can be denoted as ϕfailure and cfailure 

and the safety factor ηfe is defined as: 

failure

available

failure

available
fe

c

c

==

ϕ

ϕ
η

tan

tan
  (2)  

                      

There are two possibilities to arrive at the factor of safety as defined above. 

 

Method 1: An analysis is performed with unfactored parameters modelling all 

construction stages required. The results represent the behaviour for working load 

conditions at the defined construction steps. This analysis is followed by an automatic 

reduction of strength parameters of the soil until equilibrium can be no longer achieved 

in the calculation. The procedure can be invoked at any construction step. This approach 

is sometimes referred to as ϕ/c-reduction technique.  

 

Method 2: The analysis is performed with factored parameters from the outset, i.e. 

strength values are reduced, again in increments, but a new analysis for all construction 

stages is performed for each set of parameters. If sufficiently small increments are used 

the factor of safety is again obtained from the calculation where equilibrium could not 

be achieved. 

 

Both methods are straightforward to apply when using a standard Mohr-Coulomb 

failure criterion. In the finite element method, failure occurs naturally through the zones 

within the soil mass wherein the shear strength of the soil is not capable to resist the 

applied shear stress, so there is no need to make assumption about the shape or location 

of the failure surface.  

 
Mohr-Coulomb Failure Criterion 

 

The Mohr-Coulomb failure criterion is commonly used to describe the strength of soil. 

The relationship between shear strength and the principal stresses active on a mass of 

soil can be represented in terms of the Mohr circle of stress where the limits on the 

principal stress axis represent the major and minor principal stresses, σ1 and σ3. Mohr-

Coulomb's failure criterion (Figure 1) is a line forming a tangent to the circle at point a. 

The slope of this line is the friction angle, φ, and the line intercepts the shear stress axis 

at the value of the soil's cohesion, c.  
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Figure 1: Mohr-Coulomb failure criterion 

 

So, the Mohr-Coulomb failure envelope may be described by: 

'tan'' ϕστ += c   (3)  

Alternatively the Mohr-Coulomb criterion can be formulated in terms of principal 

stresses as follows: 
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Figure 2 illustrates a fixed hexagonal cone in principal stress space with the condition fi 

= 0 for all yield function. The Mohr-Coulomb plastic potential functions that contain a 

third plasticity parameter, the so-called dilatancy angle ψ are given by: 
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Figure 2: The Mohr-Coulomb yield surface (c = 0) (Brinkgreve et al, 2010) 

 

 

Generally, the linear perfectly-plastic Mohr-Coulomb model requires five parameter. 

These parameters are the Young’s modulus (E), Poisson’s ratio (ν), cohesion (c), 

friction angle (ϕ), and dilatancy angle (ψ). 

 
 

Slope Stability Examples 

 
In this section, five examples of slope stability analysis from Griffiths and Lane (1999) 

will be discussed. These examples will be analyzed by the finite element method and 

will be compared with the limit equilibrium methods. The analysis was performed by 

utilizing PLAXIS for the finite element method and Slope/W for the limit equilibrium 

methods. The soil model used in the analysis is the Mohr-Coulomb failure criterion.  

 
Homogeneous slope with no foundation layer 

The height of the homogeneous slope is 10 m and the gradient (horizontal to vertical) is 

2:1. Figure 3 illustrates the geometry and the two dimensional finite element meshes 

consisting of 390 15-noded elements. 
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Figure 3: Geometry and mesh for a homogeneous slope with no foundation layer  

 
The soil parameters for this example are given in Table 2. 

 

 

Table 2: Soil Parameters for Example 1 with Mohr Coulomb Model 

 

Description Symbol Unit Value 

Unit weight γ  [kN/m
3
] 20 

Effective young's modulus E’ [kPa] 100000 

Effective poisson's ratio ν' [-] 0.3 

Cohesion (effective shear strength) c' [kPa] 10 

Friction angle (effective shear strength) φ' [
o
] 20 

 

In Figure 4 the failure mechanism for this example is presented for the finite element 

method. The result of the slope stability analysis using a limit equilibrium method is 

presented in Figure 5. 

 

 
 

Figure 4: Failure mechanism for a homogeneous slope with no foundation using the 

finite element method 

 

FOS = 1.348 
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Figure 5: Morgenstern and Price Method for a homogeneous slope with no foundation 

 

 

The difference of factor of safety between the finite element method and limit 

equilibrium methods is only 2.8% and the failure mechanism are similar. 

 

 

Homogeneous slope with a foundation layer 

The homogeneous slope has a foundation layer with the thickness of half of the slope 

height in this example. The height of the slope is 10 m and the gradient (horizontal to 

vertical) is 2:1. Figure 6 shows the geometry and the two dimensional finite element 

mesh consisting of 309 15-noded elements. 

 

 
 

Figure 6: Geometry and mesh for a homogeneous slope with a foundation layer  

 

 

The soil parameters used for this example are the same as given in Table 2.  In Figure 7 

the failure mechanism is presented for the finite element method and the result of the 

analysis using a limit equilibrium method is presented in Figure 8. 
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Figure 7: Failure mechanism for a homogeneous slope with a foundation layer using 

the finite element method 
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Figure 8: Morgenstern and Price Method for a homogeneous slope with a foundation 

layer  

 

 

The difference of factor of safety between the finite element method and limit 

equilibrium methods is only 3.5% and the computed failure mechanism are similar. 

 

An undrained clay slope with a thin weak layer 

Figure 9 shows the geometry and the two dimensional finite element mesh of the 

example of an undrained clay slope with a thin weak layer. The height of the slope is 10 

m and the slope is inclined at an angle of 26.57
o
 (2:1) to the horizontal. The mesh 

consist of 562 15-noded elements. 

 

FOS = 1.339 
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Figure 9: Geometry and mesh for an undrained clay slope with a thin weak layer 

 

 

The soil parameters for this example are given in Table 3. The analyses are carried out 

using a constant value of undrained shear strength of the soil (cu1) and five different 

values of undrained shear strength of the thin layer (cu2) with ratios cu2/cu1 equal to 1, 

0.8, 0.6, 0.4, and 0.2. 

 

 

Table 3: Soil Parameters for Example 3 with Mohr Coulomb Model 

 

Description Symbol Unit Value 

Unit weight γ  [kN/m
3
] 20 

Effective young's modulus E’ [kPa] 100000 

Effective poisson's ratio ν' [-] 0.3 

Cohesion (undrained shear strength) cu1 [kPa] 50 

Friction angle (undrained shear strength) φu [
o
] 0 

 

In Figure 10 computed failure mechanisms for this example are presented for the finite 

element method with different ratios cu2/cu1 and the result of the analysis using a limit 

equilibrium method is presented in Figure 11. 
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(a)  (b) 

 
(c)  (d) 

Figure 10: Failure mechanism for an undrained clay slope with a thin weak layer using 

Finite Element Method; (a) cu2/cu1 = 0.8; (b) cu2/cu1 = 0.6; (c) cu2/cu1 = 0.4; 

(d) cu2/cu1 = 0.2 
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(c)  (d) 

Figure 11: Morgenstern and Price Method for an undrained clay slope with a thin weak 

layer; (a) cu2/cu1 = 0.8; (b) cu2/cu1 = 0.6; (c) cu2/cu1 = 0.4; (d) cu2/cu1 = 0.2 

 

The factor of safety obtained using the finite element and limit equilibrium methods for 

this example are summarised in Table 4 and illustrated in Figure 12.  

 

 

 

 

 

 

 

 

FOS = 1.424 FOS = 1.366 

FOS = 0.954 FOS = 0.505 
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Table 4: Computed factor of safety for Example 3 

 

cu2/cu1 

FOS 

Finite Element 
Method 

Morgenstern and 
Price Method 

1.0 1.451 1.448 

0.8 1.424 1.446 

0.6 1.366 1.400 

0.4 0.954 0.902 

0.2 0.505 0.451 

 

The computed factor of safety with the ratio cu2/cu1 > 0.6 using the finite element 

method are close to the Morgenstern and Price method and the failure mechanisms of 

these methods are similar. With these ratios, the strength of the thin weak layer does not 

affect the safety factor of the slope and generate a circular (base) mechanism of failure.  

When the ratio cu2/cu1 reduced to 0.6, the finite element method produce two failure 

mechanisms. The first failure mechanism is a base mechanism combined with the weak 

layer beyond the slope toe and the second failure mechanism is a non-circular 

mechanism closely following the geometry of the thin weak layer. This is shown in 

Figure 10. With this ratio, the Morgenstern and Price method only produce one failure 

mechanism, the so-called circular (base) mechanism. When the ratio cu2/cu1 is reduced 

to 0.4 and 0.2, the failure mechanism of the slope shows a non-circular mechanism 

closely following the geometry of the thin weak layer. However, with the ratio cu2/cu1 ≤ 

0.6, there is no significant difference of factor of safety between the finite element 

method and the Morgenstern and Price method. 
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Fig. 12: Computed FOS for an undrained clay slope with a thin weak layer with 

variations of cu2/cu1 
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An undrained clay slope with a weak foundation layer 

In this example analysis of an undrained clay slope of 10m height and a 10m thick 

foundation layer is carried out. The slope is inclined at an angle of 26.57
o
 (2:1) to the 

horizontal. Figure 13 shows the geometry and the two dimensional finite element mesh 

consisting of 562 15-noded elements. 

 

 
 

Figure 13: Geometry and mesh for an undrained clay slope with a weak foundation 

layer  

 

The soil parameters used for this example are given in Table 3. The analysis are carried 

out using a constant value of undrained shear strength of soil (cu1) and six different 

values of undrained shear strength of the foundation layer (cu2) with ratios cu2/cu1 equal 

to 0.5, 1.0, 1.5, 1.75, 2.0 and 2.5. 

 

In Figure 14 computed failure mechanisms for this example are presented for the finite 

element method and the results of slope stability analysis using limit equilibrium 

methods are presented in Figure 15. 

 

The factor of safety obtained using the finite element and limit equilibrium methods for 

this example are summarised in Table 5 and illustrated in Figure 16. The average 

difference of factor of safety between the finite element method and limit equilibrium 

methods is only 2.2% and the failure mechanisms of these methods are similar except 

when the ratio cu2/cu1 = 1.5. When the ratio cu2/cu1 =1.5, the finite element method 

generates two failure mechanisms, namely a base mechanism and a toe mechanism. It 

represents the transition between these two fundamental mechanisms. However, with 

this ratio, the Morgenstern and Price Method only generates one failure mechanism, the 

so-called toe mechanism. 
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(a)  (b) 

  
(c)  (d) 

 

Figure 14: Failure mechanism for an undrained clay slope with a weak foundation layer 

using the finite element method; (a) cu2/cu1 = 0.5; (b) cu2/cu1 = 1.0; (c) cu2/cu1 

= 1.5; (d) cu2/cu1 = 1.75 
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(c)  (d) 

 

Figure 15: Morgenstern and Price Method for an undrained clay slope with a weak 

foundation layer; (a) cu2/cu1 = 0.5; (b) cu2/cu1 = 1.0; (c) cu2/cu1 = 1.5; (d) 

cu2/cu1 = 1.75 
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Table 5: Computed factor of safety for Example 4 

 

cu2/cu1 

FOS 

Finite Element 
Method 

Morgenstern and 
Price Method 

0.50 0.852 0.934 

1.00 1.454 1.485 

1.50 2.032 2.052 

1.75 2.069 2.052 

2.00 2.076 2.064 

2.50 2.069 2.064 

 

Figure 16 shows that at cu2/cu1 = 1.5 the factor of safety remains constant for both 

methods. 
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Fig. 16: Computed FOS for an undrained clay slope with a weak foundation layer 

with variations of cu2/cu1 

 

Homogeneous slope with water level 

The geometry, the two dimensional finite element mesh and the soil parameters of this 

example are the same as the slope analysed in Example 1, combined with a water level 

at a depth L below the crest of the slope (Figure 17). 
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Figure 17: Geometry and mesh for homogeneous slope with water level 

 

In this analysis, a slope with different drawdown ratios L/H, which has been varied 

from 0.0 (slope completely submerged with water level at the crest of the slope) to 1.0 

(water level at the toe of the slope) is considered. This example is the so-called slow 

drawdown problem wherein a reservoir, initially at the crest of the slope, is slowly 

lowered to the base, with the water level within the slope maintaining the same level. 

 

Figure 18 shows the computed failure mechanisms for this example using the finite 

element method and Figure 19 illustrates the results of slope stability analysis using 

limit equilibrium methods. 

 

 
(a)  (b) 

 
(c)  (d)  

 
(e)  (f)  

 

Figure 18: Failure mechanism for homogeneous slope with water level using the finite 

element method; (a) L/H = 0.0; (b) L/H = 0.2; (c) L/H = 0.4; (d) L/H = 0.6; 

(e) L/H = 0.8; (f) L/H = 1.0 
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(c)  (d) 
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(e)  (f) 

 

Figure 19: Morgenstern and Price Method for homogeneous slope with horizontal 

water level (L/H = 1.0); (a) L/H = 0.0; (b) L/H = 0.2; (c) L/H = 0.4; (d) L/H 

= 0.6; (e) L/H = 0.8; (f) L/H = 1.0 

 

 

The factor of safety obtained using the finite element and limit equilibrium methods for 

this example are summarised in Table 6 and illustrated in Figure 20. The average 

difference of factor of safety between the finite element method and limit equilibrium 

methods is only 3.7% and the failure mechanisms of these methods are similar.  

 

In fully slow drawdown conditions, the factor of safety reaches a minimum when L/H = 

0.7 and the fully submerged slope (L/H = 0) is more stable than the dry slope (L/H = 1) 

as indicated by a higher factor of safety, which has been also demonstrated by Lane and 

Griffith (2000). The most severe condition is not when the water level was lowered to a 

minimum. It was observed that the movement near the toe was significantly upward and 

the failure mechanism changed when the water level was lowered to the base. 
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Table 6: Computed factor of safety for Example 5 

 

L/H 

FOS 

Finite Element 
Method 

Morgenstern and 
Price Method 

-0.1 1.815 1.847 

0.0 1.815 1.858 

0.1 1.685 1.715 

0.2 1.552 1.600 

0.3 1.449 1.507 

0.4 1.366 1.437 

0.5 1.308 1.378 

0.6 1.276 1.341 

0.7 1.259 1.331 

0.8 1.273 1.339 

0.9 1.305 1.356 

1.0 1.349 1.386 

 

L/H
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Fig. 20: Computed FOS for homogeneous slope with variations of L/H 

 

 

Summary 

 

The two approaches of slope stability analyses, one based on limit equilibrium methods 

and the other based on the finite element method are widely used in geotechnical 
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engineering. The finite element method in combination with an elastic-perfectly plastic 

(Mohr-Coulomb) model has been shown to be suitable for slope stability analysis. 

 

In simple cases similar factors of safety and failure mechanism are obtained as in limit 

equilibrium analysis, however under more complex conditions the finite element 

method is more versatile because no a priori assumptions on the shape of the failure 

mechanism has to be made. 

 

 
Reference 

 

Abramson, L., E.; Lee, T., S.; Sharma, S.; Boyce, G., M. (2002)   

Slope stability and stabilization methods. Second Edition, John Wiley & Sons, 

Inc., Canada. 

Baker, R.; Frydman, S.; Talesnick, M. (1993)   

Slope stability analysis for undrained loading conditions. International Journal of 

Numerical and Analytical Methods in Geomechanics, Vol. 17 (1), 15-43. 

Brinkgreve, R.B.J.; Swolf, W. M.; and Engin, E. (2010)   

Plaxis, users manual. The Netherlands. 

Cheng, Y., M.; Lansivaara, T.; Wei, W., B. (2007)   

Two-dimensional slope stability analysis by limit equilibrium and strength 

reduction method. Computers and Geotechnics, Vol. 34 (3), 137-150. 

Dawson, E., M.; Roth, W., H. ; Drescher, A. (1999)   

Slope stability analysis by strength reduction. Geotechnique, Vol. 49 (6), 835-840. 

Duncan, J., M. (1996)  

State of the art: Limit equilibrium and finite element analysis of slopes. Journal of 

Geotechnical Engineering, Vol. 122 (7), 577-596. 

GEO-SLOPE International (2008)   

Stability modelling with Slope/W 2007, An Engineering Methodology, Fourth 

Edition, Canada. 

Griffiths, D., V.; Lane, P., A. (1999)   

Slope stability analysis by finite elements. Geotechnique, Vol. 49 (3), 387-403. 

Krahn, J. (2003)   

The 2001 R.M. Hardy Lecture: The limits of limit equilibrium analyses. Canadian 

Geotechnical Journal, Vol. 40 (3), 643-660. 

Matsui, T.; San, K., C. (1992)   

Finite element slope stability analysis by shear strength reduction technique. Soils 

and Foundation, Vol. 32 (1), 59-70. 

 
 
 

 


