Preparation of Ammonium Metavandate from A Spent Vanadium Catalyst

Maya Ramadianti Musadi

Department of Chemical Engineering, National Institute of Technology, Bandung, Indonesia

Abstract

• Vanadium compounds are widely used in the chemical industry, e.g. V_2O_5 as catalyst and NH_4VO_3 as corrosive inhibitor in absorption column

Experimental Works

Material

The spent vanadium catalyst were supplied by PT Petrokimia Gresik, East Java, Indonesia. Table 1

Results

Extraction

The result of extraction by Na_2CO_3 is shown in Table 2.

 Table 2. Chemical analysis data for extraction product

of CO₂.

- Up till now, the vanadium sources are titomagnetite ores and their concentrates. Researches are conducted to utilize vanadium catalysts that have been disposed in the industrial processes.
- Besides fulfilling the demand for vanadium, the usage of the spent catalysts help to prevent environmental pollution due to the poisonous and dangerous vanadium.
- The objective of this research is to recover vanadium compounds from spent catalyst in form NH₄VO_{3.} This recovery process consists of two stages, i.e. extraction and crystallization.
- The result shows that the presence of Fe compound has colored and decreased the purity of the crystal. Consequently, Fe compound should be separated by precipitation.
- NH₄VO₃ with 60 %-recovery with respect to the spent catalyst and 76%-purity could be obtained by extraction at room temperature using a solution of Na₂CO₃ 1.887 M as a solvent. The time of extraction 60 minutes and the ratio of the V₂O₅ weight in the spent catalyst to the solvent volume was 6 gr/l.
- The process was then continued by the precipitation of Fe compound at pH 12 for two

shows the chemical analysis of spent catalyst sample.

Table 1. Chemical analysis data for spent catalyst

Compound	%-w
V ₂ O ₅	5.14
Fe ₂ O ₃	1.45
AI_2O_3	1.30
Na ₂ O	1.85
SiO ₂	61.29

Extraction by Na₂CO₃Solution

Compound	Concentration, M	Yield (%)
V_2O_5	0.03000	81.27
Fe ₂ O ₃	0.00500	42.02
AI_2O_3	0.00007	0.42
SiO ₂	0.00096	0.07

Effect of pH on precipitation of vanadium and iron

The effect of pH on precipitation was studied using different pH in the range 1 - 4 for 2 hours, the results are shown in Figure 3

hours and the crystallization of NH_4VO_3 using NH_4CI 11.215 M for 4 - 5 hours at $60^{\circ}C$.

Introduction

- Most chemical processes use catalyst at some stage in production process. The over all catalyst performance is assessed in terms of activity, selectivity and life.
- Catalyst which is used in the Contact process, conversion of sulphur dioxide in to sulphur trioxide for production sulphuric acid, contents V₂O₅.
- Deactivation of this catalyst may result from poisoning, fouling or coking. The rate of catalyst deactivation determining catalyst life.
- The deactivated catalyst can be regenerated or reused as a catalyst. This method is the most economic solution. It may involve recovery of V₂O₅ from spent catalyst before disposal at a minimize cost and meeting environmental standards.
- Vanadium compounds from spent catalysts can be recovered in form NH_4VO_3 . Compared to V_2O_5 , the recovery of NH_4VO_3 is more profitable since the price of vanadate compound in the market is more expensive than V_2O_5 . In addition, to produce NH_4VO_3 one can work in neutral condition while the process of obtaining V_2O_5 should be at low pH (1-3). The process in low pH is often avoided since it requires equipment with strict specification.

 $(V_2O_5; Fe_2O_3)$

Figure 1. Schematic diagram for the extraction of vanadium from Contact Process spent catalyst

Preparation of Ammonium Metavanadate

Figure 3. Effect of pH on precipitation of vanadium and iron

Ammonium Metavanadate Preparation

The chemical analysis of precipitation at pH 12 and crystallization at 60°C product indicate that pure ammonium metavanadate was produced. The composisition of this product is similar to ammonium metavanadate commercial, see Table 3.

Table 3. Chemical analysis data for AMV product

Compound	Composition, %-w	
	Laboratory	Commercial
V_2O_5	75.48	76.73
Fe ₂ O ₃	0.01	0.01
AI_2O_3	< 0.01	0.01
SiO ₂	< 0.10	0.10

Conclusion

• The spent vanadium catalyst could be an alternative resource of vanadium and raw material for ammonium metavanadate

- The recovery process of vanadium from spent catalyst consists of two stages, i.e. extraction and crystallization. The research focused on the crystallization stage and aimed to find an appropriate condition for obtaining NH₄VO₃ crystal with high purity and high recovery percentage.
- The result shows that the presence of Fe compound has colored and decreased the purity of the crystal. Fe compound could be separated by precipitation at pH 12 for two hours and then continued by crystallization of NH_4VO_3 using NH_4CI 11.215 M for 4 5 hours at $60^{\circ}C$.

Figure 2. Schematic diagram for the preparaation of Ammonium Metavanadate (NH_4VO_3)

Analysis Method

Gravimetric

Determining SiO₂ and Al₂O₃ in the spent catalyst

- Titrimetric
 Determining V₂O₅ and Fe₂O₃ in the spent catalyst, extract and filtrate
- Atomic Absorption Spectrophotometric Determining V, Al, Fe, Na, Si. in the spent catalyst, extract and filtrate

 The optimum conditions for extraction using Na₂CO₃ solution are :

- 0,006 gram $V_2O_5/ml Na_2CO_3$ (0.1887 M)

- time of extraction ; 60 minutes
- The optimum conditions for ammonium metavanadate preparation are :

- pH for Fe precipitation is 12

- temperature crystallization is 60°C

Contact :

Maya Ramadianti Musadi Department of Chemical Engineering National Institute of Technology (ITENAS) Bandung – Indonesia E-mail : mmusadi @ yahoo.com